
BEE 271 Digital circuits and systems
Spring 2017

Lecture 2: Logic circuits and Karnaugh maps

Nicole Hamilton
https://faculty.washington.edu/kd1uj

http://faculty.washington.edu/kd1uj

Topics

1. Review
a. Binary numbers
b. Boolean algebra

2. minterms and Maxterms
3. Sum of products
4. Product of sums
5. Karnaugh maps

We only have bits

We represent everything
in bits, where each bit
can be only a 0 or a 1.

Implemented as voltage
levels in a digital circuit,
e.g., shown here for TTL.

High

Output

Low

Forbidden

VOH = 2.4 V

VOL = 0.4 V

High

Input

Low

Forbidden

VIH = 2 V

VIL = 0.8 V

VCC = 5 V

Numbers are positional

In decimal

1492
1’s
10’s
100’s
1000’s

In binary

1011
1’s
2’s
4’s
8’s

Numbers are positional

In decimal

1492
100

101

102

103

In binary

1011
20 = 1
21 = 2
22 = 4
23 = 8

Adding zeroes to the left doesn’t
change the value.

In decimal

001492 = 1492
In binary

001011 = 1011

When we add numbers we get carries.

In decimal

110
1492

+ 525
2017

In binary

011
1011

+ 011
1110

Binary numbers

n-1 4 3 2 1 0

…
MSB LSB

Numbering of the individual bits is from least
significant bit (LSB) to most significant bit (MSB).

If b0 = 0, the number is even.
If b0 = 1, the number is odd.

Each bit represents a power of 2.

Value of a binary number

∑
−

=

=
1

0
2

n

i

i
ibValue

n-1 4 3 2 1 0

…
MSB LSB

Hex
1. Hard to read long

strings of nothing but
1’s and 0’s.

2. So we break it up into
groups of 4 bits called
nibbles, starting at the
LSB.

3. Take each 4-bit group
as a value from 0 to 15.

4. Values 10 to 15 written
as A to F.

0111010010011111

0111 0100 1001 1111

7 4 9 F

In hex

A12D
160 = 1
161 = 16
162 = 256
163 = 4096

Binary Decimal Hex
0000 0 0
0001 1 1
0010 2 2
0011 3 3
0100 4 4
0101 5 5
0110 6 6
0111 7 7
1000 8 8
1001 9 9
1010 10 A
1011 11 B
1100 12 C
1101 13 D
1110 14 E
1111 15 F

Exercise
What is binary 10100101 in decimal and hex?

Exercise
What is binary 10100101 in decimal and hex?

Value = 1*1 + 0*2 + 1*4 + 0*8 + 0*16
+ 1*32 + 0*64 + 1*128

= 1 + 4 + 32 + 128
= 165

10100101 = 1010 0101 = A5 hex
= A5 = 10*16 + 5 = 165

Exercise

What is binary 1111100 in decimal and hex?

Exercise

What is binary 1111100 in decimal and hex?

Value = 0*1 + 0*2 + 1*4 + 1*8 + 1*16 + 1*32 + 1*64
= 4 + 8 + 16 + 32 + 64
= 124

Only 7 bits given, extend with high-order zeros.
10100101 = 111 1100 = 0111 1100 = 7C hex

= 7*16 + 12 = 124

Converting to binary

1. Repeatedly integer
divide by 2 until the
result is 0.

2. At each step, the
remainder is the
next bit, starting
with the LSB.

(We start at the LSB
because the lowest bit
is just odd or even.)

Convert 12 to binary

Value Result Remainder
12 6 0 LSB
6 3 0
3 1 1
1 0 1 MSB

12 base 10 = 1100 binary = Hex C

Exercise: Convert 957 to binary

Value Result Remainder
957

Exercise: Convert 957 to binary

Value Result Remainder
957 478 1 LSB
478 239 0
239 119 1
119 59 1
59 29 1
29 14 1
14 7 0
7 3 1
3 1 1
1 0 1 MSB

957 decimal = 11 1011 1101 binary = 3BD hex

Exercise: Convert 1492 to hex

Value Result Remainder
1492

Exercise: Convert 1492 to hex

Value Result Remainder
1492 746 0 LSB
746 373 0
373 186 1
186 93 0
93 46 1
46 23 0
23 11 1
11 5 1
5 2 1
2 1 0
1 0 1 MSB

1492 decimal = 101 1101 0100 binary = 5D4 hex

Chapter 2

Introduction to Logic Circuits

Boolean Algebra

Values 0, 1
Variables A, B, C, Sum, DoorOpen, ..
Operations NOT, AND, OR

Operation Written as
NOT X as X, X’ or X*
X AND Y X • Y, X Y or X & Y
X OR Y X + Y

x1
x2

xn

AND If all inputs are true, the output is true.

OR If any input is true, the output is true.

x x’

NOT The output is the inverse of the input.

The basic gates.

x1 • x2 • … • xnx1
x2

x1 • x2

x1 + x2 x1 + x2 + … + xnx1
x2

x1
x2

xn

A

A • B

A

(A • B)’

B

A

B

A

B

A

B

A

B

A

B

A + B (A + B)’

A A A’

A ^ B =
 AB’ + A’B

(A ^ B)’ =
 AB + A’B’

Buffer Inverter

AND NAND

OR NOR

XOR XNOR

A more complete set of gates

We describe Boolean functions with truth tables.

Truth tables

a b a AND b

0
0
0
1

0
0
1
1

0
1
0
1

a b a OR b

0
1
1
1

0
0
1
1

0
1
0
1

a NOT a

1
0

0
1

a b a XOR b

0
1
1
0

0
0
1
1

0
1
0
1

Addition of one-bit binary numbers.

s1

a
b

s0

a
+b

s1 s0

1
+1

1 0

a b s1 s0
0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

0
+0

0 0

0
+1

0 1

1
+0

0 1

Truth tables

OR together product terms for
each truth table row where the
function is 1.

If input variable is 0, it appears
in complemented form; if 1, it
appears uncomplemented.

Deriving Boolean equations from truth tables:

a b s1 s0
0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

Truth tables

Deriving Boolean equations from truth tables:

s0 = a ^ b

s1 = a b

a b s1 s0
0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

A

0
0
0
0
1
1
1
1

B

0
0
1
1
0
0
1
1

Cin

0
1
0
1
0
1
0
1

Sum

0
1
1
0
1
0
0
1

Cout

0
0
0
1
0
1
1
1

Example: a full adder

Sum =

Cout =

A

0
0
0
0
1
1
1
1

B

0
0
1
1
0
0
1
1

Cin

0
1
0
1
0
1
0
1

Sum

0
1
1
0
1
0
0
1

Cout

0
0
0
1
0
1
1
1

Example: a full adder

Sum = A’ B’ Cin + A’ B Cin’ + A B’ Cin’ + A B Cin

Cout = A’ B Cin + A B’ Cin + A B Cin’ + A B Cin

Example: A majority function

1. Output should = 1 if the majority of the inputs = 1.

A
B
C

Out

2. Consider the unknown
circuit a “black box”.

3. Create a truth table.

Truth Table

A B C Out

4. Enumerate all the possible input combinations.

Example: A majority function

A
B
C

Out

Truth Table

A B C

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

Out

5. Fill in the outputs.

Example: A majority function

A
B
C

Out
0
0
0
1
0
1
1
1

Truth Table

A B C

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

Out

5. Write the equation summing up all the 1’s.

Out = A’ B C + A B’ C + A B C’ + A B C

Example: A majority function

A
B
C

Out
0
0
0
1
0
1
1
1

Truth Table

A B C

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

Out

A deeper dive into
Boolean algebra

Boolean algebra

Named after
George Boole, who
published an
algebraic
description of the
processes involved
in logical thought
and reasoning in
1849.

https://en.wikipedia.org/wiki/George_Boole

https://en.wikipedia.org/wiki/George_Boole

Boolean algebra

In the 1930s,
used by Claude
Shannon to
describe circuits
built with
switches, and
thus with logic
circuits.

https://en.wikipedia.org/wiki/Claude_Shannon

https://en.wikipedia.org/wiki/Claude_Shannon

ax·i·om
/ˈaksēәm/
noun

a statement or proposition that is regarded as being established, accepted, or
self-evidently true.
"the axiom that supply equals demand"
synonyms: accepted truth, general truth, dictum, truism, principle; More
• MATHEMATICS

a statement or proposition on which an abstractly defined structure is based.

Axioms of Boolean Algebra

1a. 0 • 0 = 0
1b. 1 + 1 = 1
2a. 1 • 1 = 1
2b. 0 + 0 = 0
3a. 0 • 1 = 1 • 0 = 0
3b. 1 + 0 = 0 + 1 = 1
4a. If x = 0, then x’ = 1
4b. If x = 1, then x’ = 0

• +

0 1

Notice the duality:

Single-variable theorems
5a. x • 0 = 0
5b. x + 1 = 1
6a. x • 1 = x
6b. x + 0 = x
7a. x • x = x Replication
7b. x + x = x
8a. x • x’ = 0
8b. x + x’ = 1
9. (x’)’ = x

Easily proved by perfect induction, trying all the possibilities.

2 and 3-variable properties
10a. x • y = y • x Commutative
10b. x + y = y + x
11a. x • (y • z) = (x • y) • z Associative
11b. x + (y + z) = (x + y) + z
12a. x • (y + z) = x • y + x • z Distributive
12b. x + y • z = (x + y) • (x + z)
13a. x + x • y = x Absorption
13b. x • (x + y) = x
14a. x • y + x • y’ = x Combining
14b. (x + y) • (x + y’) = x

Easily proved by perfect induction, trying all the possibilities.

2 and 3-variable properties

15a. (x • y)’ = x’ + y’ DeMorgan’s theorem
15b. (x + y)’ = x’ • y’
16a. x + x’ • y = x + y
16b. x • (x’ + y) = x • y
17a. x • y + y • z + x’ • z = x • y + x’ • z Consensus
17b. (x + y) • (y + z) • (x’ + y) = (x + y) • (x’ + z)

Easily proved by perfect induction, trying all the possibilities.

Can prove Boolean theorems by
1. Perfect induction
2. Algebraically
3. Venn diagrams

Proof of DeMorgan’s theorem by perfect induction,
enumerating all the possibilities in a truth table.

DeMorgan’s theorem by perfect induction
(x • y)’ = x’ + y’

LHS RHS
x y x • y (x • y)' x' y' x' + y'
0 0 0 1 1 1 1
0 1 0 1 1 0 1
1 0 0 1 0 1 1
1 1 1 0 0 0 0

Identical

Combining theorem:
14a. x • y + x • y’ = x
14b. (x + y) • (x + y’) = x

x • y + x • y’ = x (y + y’)
= x

(x + y) (x + y’) = x x + x y’ + x y + y y’
= x + x (y’ + y) + 0
= x + x = x

Algebraic proof of the Combining theorem

Algebraic proof of the Consensus theorem

Prove: x y + x’ z + y z = x y + x’ z

(x + x’) = 1

y z = (x + x’) y z = x y z + x’ y z

Substituting back into the original LHS:

x y + x’ z + y z = x y + x’ z + (x y z + x’ y z)

= x y + x y z + x’ z + x’ y z

= x y (1 + z) + x’ z (1 + y)

= x y + x’ z

Prove we can ignore
this term.

X • Y

Proof of DeMorgan’s Theorem

(X • Y)’

X’

Y’

X’ + Y’

a

DeMorgan’s theorem in terms of logic gates.

Bubble pushing

b
f

a

b
f

a
b

g

a
b

f

a
b

g
a

b
g

f = (a b)’ = a’ + b’

g = (a + b)’ = a’ b’

Operator precedence
Highest NOT x’

AND •
Lowest OR +

Example: x + y • z’ = x + (y • (z’))

Parentheses can be used to specify a different
order of evaluation, for example:

((x + y) • z)’

We tend to omit the • when the meaning is clear.

Minimization

Often relies on these Boolean theorems:

1. a + a b = a (1 + b) = a
2. a b + a b’ = a (b + b’) = a
3. (a + b) (a + b’) = a
4. a + a = a

Synthesis is the process of beginning with a
description of the desired functional behavior
and then generating a circuit that realizes that
behavior.

Exercise: Synthesize this function

x1 x2 f(x1, x2)
0 0 1
0 1 1
1 0 0
1 1 1

Exercise: Synthesize this function

x1 x2 f(x1, x2)
0 0 1
0 1 1
1 0 0
1 1 1

f(x1, x2) = x1’ x2’ + x1’ x2 + x1 x2

We like to simplify both

x1’ x2’ + x1’ x2 = x1’ (x2’ + x2) = x1’

x1’ x2 + x1 x2 = (x1’ + x1) x2 = x2

To do that, we add a copy of the middle
term. We can do that because x + x = x.

Exercise: Synthesize this function

x1 x2 f(x1, x2)
0 0 1
0 1 1
1 0 0
1 1 1

f(x1, x2) = x1’ x2’ + x1’ x2 + x1 x2

Since x + x = x, we can replicate the middle
term:

f(x1, x2) = x1’ x2’ + x1’ x2 + x1’ x2 + x1 x2

Using the distributive property:

f(x1, x2) = x1’ (x2’ + x2) + (x1’ + x1) x2

= x1’ + x2

f

(a) Canonical sum-of-products

f

(b) Minimal-cost realization

x 2

x 1

x 1

x 2

Figure 2.20. Two implementations of the function in Figure 2.19.

f(x1, x2) = x1’ + x2

Correct, but
not simplest.

x1 x2 f(x1, x2)
0 0 1
0 1 1
1 0 0
1 1 1

Figure 2.21. A bubble gumball factory.

s1 = 1  Too light
s2 = 1  Too small
s3 = 1  Too big
f = 1  Reject the gumball

Reject if the ball is too large or
both too small and too light.

We could OR together one term per row where f = 1.

f = s1’ s2’ s3 + s1’ s2 s3 + s1 s2’ s3 + s1 s2 s3’ + s1 s2 s3
Duplicating last term and collecting terms:

= s1’ s3 (s2’ + s2) + s1 s3 (s2’ + s2) + s1 s2 (s3’ + s3)
= s1’ s3 + s1 s3 + s1 s2
= (s1’ + s1) s3 + s1 s2
= s3 + s1 s2

Two ways to synthesize a function

Sum of products: Include all rows
where f = 1 using minterms.

Product of sums: Exclude all rows
where f = 0 using Maxterms.

minterms and Maxterms

A minterm is 1 for only one row.

A Maxterm is 0 for only one row.

Minterms and maxterms for all possible combinations of 3 variables

Row x1 x2 x3 Minterm Maxterm

0 0 0 0 m0 = x1' x2' x3' M0 = x1 + x2 + x3

1 0 0 1 m1 = x1' x2' x3 M1 = x1 + x2 + x3'

2 0 1 0 m2 = x1' x2 x3' M2 = x1 + x2' + x3

3 0 1 1 m3 = x1' x2 x3 M3 = x1 + x2' + x3'

4 1 0 0 m4 = x1 x2' x3' M4 = x1' + x2 + x3

5 1 0 1 m5 = x1 x2' x3 M5 = x1' + x2 + x3'

6 1 1 0 m6 = x1 x2 x3' M6 = x1' + x2' + x3

7 1 1 1 m7 = x1 x2 x3 M7 = x1' + x2' + x3'

Minterms are
small m

Maxterms are
big M

A minterm is 1 for only one row.

It’s an AND expression in which
each of the input variables appears
once.

Each variable can be in
complemented, or
uncomplemented, e.g., x’ or x.

To match a row in a truth table,
use the uncomplemented form to
match a 1 and the complemented
form to match a 0.

For example, x1 x2’ x3 matches the
row where
(x1, x2, x3) = (1, 0, 1)

Minterms (small m)

Row x1 x2 x3 Minterm

0 0 0 0 m0 = x1' x2' x3'

1 0 0 1 m1 = x1' x2' x3

2 0 1 0 m2 = x1' x2 x3'

3 0 1 1 m3 = x1' x2 x3

4 1 0 0 m4 = x1 x2' x3'

5 1 0 1 m5 = x1 x2' x3

6 1 1 0 m6 = x1 x2 x3'

7 1 1 1 m7 = x1 x2 x3

A maxterm is a 0 for only one
matching row.

It’s an OR expression in which each
of the input variables appears once.

Each variable can be in
complemented, or
uncomplemented, e.g., x’ or x.

To match a row in a truth table, use
the complemented form to match a
1 and the uncomplemented form to
match a 0.

For example, x1’ + x2 + x3’ matches
the row where
(x1, x2, x3) = (1, 0, 1).

Maxterms (big M)

Row x1 x2 x3 Maxterm

0 0 0 0 M0 = x1 + x2 + x3

1 0 0 1 M1 = x1 + x2 + x3'

2 0 1 0 M2 = x1 + x2' + x3

3 0 1 1 M3 = x1 + x2' + x3'

4 1 0 0 M4 = x1' + x2 + x3

5 1 0 1 M5 = x1' + x2 + x3'

6 1 1 0 M6 = x1' + x2' + x3

7 1 1 1 M7 = x1' + x2' + x3'

Sum of products

()∑ •= ifimf

Where fi is the desired result for row i.
If fi is 0, we can eliminate that term.

Include all rows where f = 1 using minterms.

Using minterms for the rows where we want ones:

()∑ •= ifimf

Row x1 x2 x3 f(x1, x2, x3)
0 0 0 0 0
1 0 0 1 1
2 0 1 0 0
3 0 1 1 0
4 1 0 0 1
5 1 0 1 1
6 1 1 0 1
7 1 1 1 0

Exercise: A 3-variable function we'd like to synthesize

()∑ •= ifimf

Using minterms for the rows where we want ones:

f = Σm(1, 4, 5, 6) = m1 + m4 + m5 + m6
= (m1 + m5) + (m4 + m6)
= (x1’ x2’ x3 + x1 x2’ x3) + (x1 x2’ x3’ + x1 x2 x3’)
= (x1’ + x1) x2’ x3 + x1 (x2’ + x2) x3’
= x2’ x3 + x1 x3’

Row x1 x2 x3 f(x1, x2, x3)
0 0 0 0 0
1 0 0 1 1
2 0 1 0 0
3 0 1 1 0
4 1 0 0 1
5 1 0 1 1
6 1 1 0 1
7 1 1 1 0

Exercise: A 3-variable function we'd like to synthesize

Product of sums

()∏ += ifiMf

Where fi is the desired result for row i.
If fi is 1, we can eliminate that term.

Exclude all rows where f = 0 using Maxterms.

Using Maxterms for the rows where we want zeros:
f =

Row x1 x2 x3 f(x1, x2, x3)
0 0 0 0 0
1 0 0 1 1
2 0 1 0 0
3 0 1 1 0
4 1 0 0 1
5 1 0 1 1
6 1 1 0 1
7 1 1 1 0

()∏ += ifiMf

Exercise: A 3-variable function we'd like to synthesize

Using Maxterms for the rows where we want zeros:
f = ΠM(0, 2, 3, 7) = M0 • M2 • M3 • M7

Row x1 x2 x3 f(x1, x2, x3)
0 0 0 0 0
1 0 0 1 1
2 0 1 0 0
3 0 1 1 0
4 1 0 0 1
5 1 0 1 1
6 1 1 0 1
7 1 1 1 0

()∏ += ifiMf

Exercise: A 3-variable function we'd like to synthesize

Using Maxterms for the rows where we want zeros:
f = ΠM(0, 2, 3, 7) = M0 • M2 • M3 • M7
= (x1 + x2 + x3) (x1 + x2’ + x3) (x1 + x2’ + x3’) (x1’ + x2’ + x3’)

Row x1 x2 x3 f(x1, x2, x3)
0 0 0 0 0
1 0 0 1 1
2 0 1 0 0
3 0 1 1 0
4 1 0 0 1
5 1 0 1 1
6 1 1 0 1
7 1 1 1 0

()∏ += ifiMf

Exercise: A 3-variable function we'd like to synthesize

Using Maxterms for the rows where we want zeros:
f = ΠM(0, 2, 3, 7) = M0 • M2 • M3 • M7
= (x1 + x2 + x3) (x1 + x2’ + x3) (x1 + x2’ + x3’) (x1’ + x2’ + x3’)
= ((x1 + x3) + x2) ((x1 + x3) + x2’) (x1 + (x2’ + x3’)) (x1’ + (x2’ + x3’))

Row x1 x2 x3 f(x1, x2, x3)
0 0 0 0 0
1 0 0 1 1
2 0 1 0 0
3 0 1 1 0
4 1 0 0 1
5 1 0 1 1
6 1 1 0 1
7 1 1 1 0

()∏ += ifiMf

Exercise: A 3-variable function we'd like to synthesize

Using Maxterms for the rows where we want zeros:

f = M0 • M2 • M3 • M7
= (x1 + x2 + x3)(x1 + x2’ + x3)(x1 + x2’ + x3’)(x1’ + x2’ + x3’)
= ((x1 + x3) + x2) ((x1 + x3) + x2’) (x1 + (x2’ + x3’))(x1’ + (x2’ + x3’))

Combining theorem:
14a. x • y + x • y’ = x
14b. (x + y) • (x + y’) = x

f = ((x1 + x3) + x2) ((x1 + x3) + x2’) (x1 + (x2’ + x3’)) (x1’ + (x2’ + x3’))
= (x1 + x3) (x2’ + x3’)

Using Maxterms for the rows where we want zeros:
f = ΠM(0, 2, 3, 7) = M0 • M2 • M3 • M7
= (x1 + x2 + x3) (x1 + x2’ + x3) (x1 + x2’ + x3’) (x1’ + x2’ + x3’)
= ((x1 + x3) + x2) ((x1 + x3) + x2’) (x1 + (x2’ + x3’)) (x1’ + (x2’ + x3’))
= (x1 + x3)(x2 + x2’)(x2’ + x3’)(x1 + x1’)
= (x1 + x3)(x2’ + x3’)

Row x1 x2 x3 f(x1, x2, x3)
0 0 0 0 0
1 0 0 1 1
2 0 1 0 0
3 0 1 1 0
4 1 0 0 1
5 1 0 1 1
6 1 1 0 1
7 1 1 1 0

()∏ += ifiMf

Exercise: A 3-variable function we'd like to synthesize

Figure 2.24. Two realizations of the function.

f

(a) A minimal sum-of-products realization

f

(b) A minimal product-of-sums realization

x1

x2

x3

x2

x1
x3

f = x2’ x3 + x1 x3’

f = (x1 + x3)(x2’ + x3’)

Exercise: A 3-variable function
we'd like to synthesize

Row x1 x2 x3
f(x1, x2,

x3)
0 0 0 0 0
1 0 0 1 1
2 0 1 0 0
3 0 1 1 0
4 1 0 0 1
5 1 0 1 1
6 1 1 0 1
7 1 1 1 0

Are POS and SOP solutions
always equivalent cost?

1. Does it matter how many rows
are 1s and how many are 0s?
Why or why not?

2. Does it matter which rows are 1s
or 0s in relation to each other?

Exercise: A 3-variable function
we'd like to synthesize

Row x1 x2 x3
f(x1, x2,

x3)
0 0 0 0 0
1 0 0 1 1
2 0 1 0 0
3 0 1 1 0
4 1 0 0 1
5 1 0 1 1
6 1 1 0 1
7 1 1 1 0

Karnaugh maps

Want simplest forms but the algebra is difficult.

Karnaugh maps

Invented by
Maurice Karnaugh
in 1954 as a
graphical method
for simplifying
Boolean equations.

http://www.ithistory.org/sites/default/files/honor-
roll/Maurice%20Karnaugh.jpg

http://www.ithistory.org/sites/default/files/honor-roll/Maurice%20Karnaugh.jpg

row a b f
0 0 0
1 0 1
2 1 0
3 1 1

b
0 1

a 0 0 1
1 2 3

a
0 1

b 0 0 2
1 1 3

Karnaugh maps

Truth table

Map rows in a truth table to cells in a matrix.
May choose either assignment of columns and rows.

row a b f
0 0 0 1
1 0 1 1
2 1 0 0
3 1 1 1

b
0 1

a 0 1 1
1 0 1

a
0 1

b 0 1 0
1 1 1

Example

Fill in the desired output values.

Truth table

b
0 1

a 0 1 1
1 0 1

Use the Combining property to group neighboring
cells where the output should be the same.

14a. x • y + x • y’ = x

b

row a b f
0 0 0 1
1 0 1 1
2 1 0 0
3 1 1 1

Truth table Karnaugh map

a’

Form the minimal SOP solution.

f = a’ + b

row a b f
0 0 0 1
1 0 1 1
2 1 0 0
3 1 1 1

Truth table Karnaugh map

f
b
a

b
0 1

a 0 1 1
1 0 1

b

a’

bc

00 01 11 10

a 0 0 1 3 2

1 4 5 7 6

row a b c f
0 0 0 0
1 0 0 1
2 0 1 0
3 0 1 1
4 1 0 0
5 1 0 1
6 1 1 0
7 1 1 1

A function of 3 variables

Truth table Karnaugh map

Map the rows to a 2 x 4 matrix.
Columns are arranged so each
differs by only 1 bit from the next.

bc

00 01 11 10

a 0 0 0 1 0

1 0 1 1 1

row a b c f
0 0 0 0 0
1 0 0 1 0
2 0 1 0 0
3 0 1 1 1
4 1 0 0 0
5 1 0 1 1
6 1 1 0 1
7 1 1 1 1

Example

Truth table Karnaugh map

bc

00 01 11 10

a 0 0 0 1 0

1 0 1 1 1

row a b c f
0 0 0 0 0
1 0 0 1 0
2 0 1 0 0
3 0 1 1 1
4 1 0 0 0
5 1 0 1 1
6 1 1 0 1
7 1 1 1 1

Example

Truth table Karnaugh map

f = a b + a c + b c

row a b c d f
0 0 0 0 0
1 0 0 0 1
2 0 0 1 0
3 0 0 1 1
4 0 1 0 0
5 0 1 0 1
6 0 1 1 0
7 0 1 1 1
8 1 0 0 0
9 1 0 0 1

10 1 0 1 0
11 1 0 1 1
12 1 1 0 0
13 1 1 0 1
14 1 1 1 0
15 1 1 1 1

cd
00 01 11 10

ab 00 0 1 3 2
01 4 5 7 6
11 12 13 15 14
10 8 9 11 10

A function of four variables
Truth table Karnaugh map

Map the rows to a 4 x 4 matrix
either way. (I use the top one.)

ab
00 01 11 10

cd 00 0 4 12 8
01 1 5 13 9
11 3 7 15 11
10 2 6 14 10

row a b c d f
0 0 0 0 0 0
1 0 0 0 1 0
2 0 0 1 0 0
3 0 0 1 1 1
4 0 1 0 0 1
5 0 1 0 1 0
6 0 1 1 0 1
7 0 1 1 1 0
8 1 0 0 0 0
9 1 0 0 1 0

10 1 0 1 0 0
11 1 0 1 1 1
12 1 1 0 0 1
13 1 1 0 1 0
14 1 1 1 0 1
15 1 1 1 1 0

cd
00 01 11 10

ab 00 0 0 1 0
01 1 0 0 1
11 1 0 0 1
10 0 0 1 0

Example
Truth table Karnaugh map

Copy the outputs to the
Karnaugh map.

row a b c d f
0 0 0 0 0 0
1 0 0 0 1 0
2 0 0 1 0 0
3 0 0 1 1 1
4 0 1 0 0 1
5 0 1 0 1 0
6 0 1 1 0 1
7 0 1 1 1 0
8 1 0 0 0 0
9 1 0 0 1 0

10 1 0 1 0 0
11 1 0 1 1 1
12 1 1 0 0 1
13 1 1 0 1 0
14 1 1 1 0 1
15 1 1 1 1 0

cd
00 01 11 10

ab 00 0 0 1 0
01 1 0 0 1
11 1 0 0 1
10 0 0 1 0

Example
Truth table Karnaugh map

Identify the prime implicants.

Notice that the Karnaugh map
“wraps” vertically and horizontally.

f = b d’ + b’ c d

row a b c d f
0 0 0 0 0 0
1 0 0 0 1 0
2 0 0 1 0 0
3 0 0 1 1 1
4 0 1 0 0 1
5 0 1 0 1 0
6 0 1 1 0 1
7 0 1 1 1 0
8 1 0 0 0 0
9 1 0 0 1 0

10 1 0 1 0 0
11 1 0 1 1 1
12 1 1 0 0 1
13 1 1 0 1 0
14 1 1 1 0 1
15 1 1 1 1 0

cd
00 01 11 10

ab 00 1
01 1 1
11 1 1
10 1

Example
Truth table Karnaugh map

If we’re collecting 1’s for an SOP
solution, we can leave out the 0’s.

f = b d’ + b’ c d

SOP terminology

Literal A variable or its complement, e.g., x or x’.

Product term A product, e.g., x y’ z, of some number of
literals.

Implicant A product terms for which the output is
1. That product term implies the output
is true.

Prime implicant An implicant that cannot be combined
with another with fewer literals.

Each row or cell where f = 1 is an implicant.
The prime implicants are a’ and b.

f = a’ + b

row a b f
0 0 0 1
1 0 1 1
2 1 0 0
3 1 1 1

Truth table Karnaugh map

b
0 1

a 0 1 1
1 0 1

b

a’

Cover A collection of implicants that account
for all cases for which the output = 1.

Essential prime implicant
A prime implicant that must be
included in any cover.

f = a’ + b

row a b f
0 0 0 1
1 0 1 1
2 1 0 0
3 1 1 1

Truth table Karnaugh map

b
0 1

a 0 1 1
1 0 1

b

a’

a’ and b form a cover for f.
Both are essential prime implicants.

For a function of n variables, there will be 2n rows in
the truth table and 2n cells in the Karnaugh map.

f = a’ + b

row a b f
0 0 0 1
1 0 1 1
2 1 0 0
3 1 1 1

Truth table Karnaugh map

b
0 1

a 0 1 1
1 0 1

b

a’

f = a’ + b

row a b f
0 0 0 1
1 0 1 1
2 1 0 0
3 1 1 1

Truth table Karnaugh map

b
0 1

a 0 1 1
1 0 1

b

a’

The number of cells in an implicant must be a
power of 2.

f = a’ + b

row a b f
0 0 0 1
1 0 1 1
2 1 0 0
3 1 1 1

Truth table Karnaugh map

b
0 1

a 0 1 1
1 0 1

b

a’

For a function of n variables, if an implicant
has k literals, it must cover 2n-k cells.

	BEE 271 Digital circuits and systems�Spring 2017�Lecture 2: Logic circuits and Karnaugh maps
	Topics
	We only have bits
	Numbers are positional
	Numbers are positional
	Adding zeroes to the left doesn’t change the value.
	When we add numbers we get carries.
	Binary numbers
	Value of a binary number
	Hex
	Slide Number 11
	Exercise
	Exercise
	Exercise
	Exercise
	Converting to binary
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Chapter 2��Introduction to Logic Circuits��
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Truth tables
	Slide Number 26
	Truth tables
	Truth tables
	Example: a full adder
	Example: a full adder
	Example: A majority function
	Example: A majority function
	Example: A majority function
	Example: A majority function
	A deeper dive into�Boolean algebra
	Boolean algebra
	Boolean algebra
	Slide Number 38
	Axioms of Boolean Algebra
	Single-variable theorems
	2 and 3-variable properties
	2 and 3-variable properties
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Algebraic proof of the Consensus theorem
	Slide Number 47
	Slide Number 48
	Operator precedence
	Minimization
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Two ways to synthesize a function
	minterms and Maxterms
	Slide Number 60
	Minterms (small m)
	Maxterms (big M)
	Sum of products
	Slide Number 64
	Slide Number 65
	Product of sums
	Slide Number 67
	Slide Number 68
	Slide Number 69
	Slide Number 70
	Slide Number 71
	Slide Number 72
	Slide Number 73
	Are POS and SOP solutions always equivalent cost?
	Karnaugh maps
	Karnaugh maps
	Slide Number 77
	Slide Number 78
	Slide Number 79
	Slide Number 80
	Slide Number 81
	Slide Number 82
	Slide Number 83
	Slide Number 84
	Slide Number 85
	Slide Number 86
	Slide Number 87
	SOP terminology
	Slide Number 89
	Slide Number 90
	Slide Number 91
	Slide Number 92
	Slide Number 93
	Slide Number 94

